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ABSTRACT: The apparent 8 to 9km height limit of mountains will be addressed using critical
state shear strength arguments, since confined compression strength is too high to explain these
‘limited’ heights. Modified Mohr Coulomb criteria have been derived based on critical state
mechanics for rocks. These criteria are utilised to obtain estimates of maximum shear strength
which actually is more likely to govern the height limit of mountains.

1 INTRODUCTION

There are fifteen mountains in the world with heights in the rarified range of 8 to 9km. The
highest is Everest at approximately 8,848m. An extract from a Wikipedia photograph is shown
in Figure 1. Since we are concerned with the ultimate strength of rock one can pose the
guestion: why are the highest mountains no higher than 9km? Have mountains ever been higher
than this during the earth’s history? Since plate tectonics have been at work for a very long time,
and contrary glacial processes also, one can perhaps assume that the extensive ‘empirical
evidence’ that we see today is also a reflection of what has been in the recent and distant past.
The strength of rock has little reason to have changed either, although it could be higher ‘today’
if the geothermal gradient had declined significantly.

In a well-known article written by Terzaghi (1962) near the end of his career: ‘Stability of
steep slopes on hard unweathered rock’, a simple formulation of critical slope height was
suggested: H = qg/y, where the uniaxial strength of rock and the vertical stress caused by its
density are compared. The assumed vertical stress is estimated to be yH (or yH/100 if using
familiar MPa units as in rock mechanics). One can also use units kN/m?and kN/m? for the rock
strength and density. Concerning the height of steep slopes, as opposed to mountains, Terzaghi
suggested that the reason this formula over-predicted heights must be due to the presence of
jointing. In fact, an explanation of cliff and mountain-wall heights has recently been developed
as H=a/yv, involving the tensile strength of intact rock, density, and Poisson’s ratio.

The even simpler ‘Terzaghi’ formula or its equivalent has been observed in use in internet
‘chat sites’ (“What rock strength is the highest mountain limited by?). The UCS/density formula
(unfortunately) appears to produce a ‘realistic’ height for the highest mountains, when using the
uniaxial strength of strong rocks such as 250MPa. However, at 9km depth, the rock mechanics
reality concerning compression strength will be the 2 to 3 times higher polyaxially confined
compression strength, and we do not accept 20-25km high mountains as being possible on earth,
with our strong gravity. We need another explanation for the height ‘limit’ of apparently, about
9km.

Formation of high mountains due to colliding of plates in tectonically active region can be
explained as shown in Fig. 2 (Nedoma, 1997). It was suggested that due to tectonic forces the
lower plate bends downwards and releases horizontal tectonic stress. The horizontal stress
becomes minor principal stress near the thrust. There is subsidence and normal faulting in the
lower plate. The upper plate bends upwards and introduces compression and higher tectonic
stress. The horizontal stress becomes major principal stress. This region experiences continuous
uplifting in the form of mountains. The boundary of colliding plates experiences thrust faulting.
The bottom part of the upper plate also bends upwards, due to which tangential stresses are
released. Decrease in confining stress results in reduction of melting temperature of the rock and
the rock melts. This molten rock may come out in the form of volcanoes.



Figure 1. Mount Everest, 8,864m (Wikipedia photo). Note that the peak of Everest is immediately behind
the peak showing possible ‘shear-planes’. (These cannot be tilted bedding). Misuse of the ‘Terzaghi’
formula: hc = 100 oc/y gives an apparently correct answer for maximum mountain height (e.g.100 x
250/2.8 = 8.9km). The problem is that it has to be the confined strength of rock at 9 km depth, and this is
much too high. Otherwise we would have 20-25km high mountains. Correct logic suggests a lower
(critical state) shear strength limit, which may (also) be approximately 250 MPa. Figure 4 shows a
possible explanation.
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Figure 2. Precursors to the formation of high mountains due to interaction between colliding plate
boundaries (Redrawn after Nedoma, 1997).

2 CONFINED COMPRESSIVE STRENGTH OF INTACT ROCKS

An appropriate failure criterion is required to obtain the confined compressive strength of intact
rocks. The conventional linear Mohr-Coulomb criterion, though used extensively, has the
limitation that the strength is assumed to be varying linearly with confining stress. It is a well
accepted fact that variation in normal stress substantially alters the failure mode and the shear
strength of the rock varies in a non-linear manner (Fig. 3) (Lockner and Beeler, 2002). For large
variation in oy, like those occurring at great depths in the earth’s crust, the non-linearity of the
failure envelope substantially influences strength behaviour and should be considered while
analysing strength behaviour.

In this context, the application of a critical state concept for rocks (Barton, 1976) has been
found to be promising in correctly defining the strong curvature of the failure envelope (Singh
and Singh, 2005; Singh et al., 2011, Shen et al. 2019). Barton (1976) postulated that ‘the critical
state for any intact rock is defined as the stress condition under which the Mohr-envelope of
peak shear strength of the rocks reaches a point of zero gradient. This condition represents the
maximum possible shear strength of the rock. For each rock, there will be a critical effective
confining pressure above which the shear strength cannot be made to increase’. With increasing



confining pressure, the failure mechanism passes through brittle, brittle-ductile-transition,
ductile and finally critical state (Fig. 4). Barton’s proposal for a critical state maximum possible
shear strength was based on the observations of the strong curvature of the shear strength
envelopes of numerous intact rocks, as demonstrated by Mogi (1966) (Fig. 4)
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Figure 3. Mohr failure envelope showing relation between stresses and failure parameters
(Redrawn from Lockner and Beeler, 2002)
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Figure 4. Observation of the strong curvature of the shear strength of intact rock at high confining
pressure, with these examples from Mogi (1966) was the reason for proposing a critical state maximum
possible shear strength in Barton (1976). Since this time a detailed study of more than 1,000 triaxial tests
was performed by Singh et al. (2011), who verified that the majority of rocks exhibited close proximity, if
not equality, of the UCS Mohr circle and the critical confining pressure needed to reach the critical stress
(see oc and o3 sides of adjacent Mohr circles in the left-hand figure). Since o iS approximately
numerically equal to Tmax due to the equality of the o diameter and the radius of the critical Mohr circle,
this simple ‘geometry’ can explain the high, but none the less limited shear strength of potential failure
planes deep below the highest mountain chains.

The failure envelope for a well-known set of triaxial test data (Schwartz, 1964) reported in
the literature (Hoek, 1983) is shown in Fig. 5. It is seen that the failure envelope approaches a
point of zero gradient when confining stress is near 40 MPa. An evidence of a reduction in the
friction angle is also given by Shankar et al. (2000). Based on back analysis, a friction angle of
only 5° was reported for a depth of 40 km below the ground surface along the plate boundary in
the Tibet Himalayan plate. It is interesting to note that the lesser the frictional resistance along
colliding inter-plate boundaries, the lesser will be the locked-in strain energy in the large earth



plates. Therefore the chances of really great earthquakes in such an area are reduced. The largest
earthquake that has taken place beneath the Tibetan plateau is ‘only’ M7 on Richter's scale
(Singh et al., 2005).
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Figure 5. Critical state condition for Indiana limestone (Schwartz 1964; redrawn from Hoek, 1983).

2.1 Critical State Concept Based Failure Criterion for Rocks

By introducing a square term of confining pressure in the conventional linear Mohr-Coulomb
failure criterion, Singh et al. (2011) suggested a Modified Mohr-Coulomb (MMC) criterion as
follows:
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Note: ¢io = friction angle (MC parameter) of the rock for o3—0, cic= cohesion (MC parameter)
for the rock for 63—0, ocni = critical confining pressure, the confining pressure at which the
failure envelope in t-oc space becomes horizontal. At o3 = ocri the shear strength of rock will
reach its maximum, the deviatoric stress at failure (o1-o3) will be constant for o3> oeri.
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The criterion has two parameters ocii and ¢io. TO get parameter oeni, Singh et al. (2011) back
analysed a database comprising 154 triaxial data sets and came up with the suggestion that the
critical confining pressure for an intact rock may be taken nearly equal to its UCS value. In the
present study (2019) some additional data (from Shen et al., 2014; Jimenez, 2014) was added to
the data base of Singh et al. (2011) to re-confirm the findings of Singh et al. (2011). The present
data base comprises of the following extensive triaxial test data:

Table 1. The triaxial data sets available in the present analysis.

Rock type No. of data sets No. of triaxial tests
Igneous 42 293
Sedimentary 98 592
Metamorphic 63 371
Total 203 1256




The following steps were used to back analyse oeni:

i. Out of the two unknown parameters ocri and dio, assume a first trial value of ocri as a
multiple of UCS o.i (ocrii = K.oci). Say for example the first trial value is considered as
0.20 o.i (k=0.2),

ii. Consider the first triaxial test data set; the set includes UCS and a set of (o3, 1) values,

iii. Fit the failure criterion into the data and find out the best fitting value of the parameter
dio by least square method. Compute the percent error in prediction for each triaxial
strength value as:
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where pe is the percent error in prediction, ciexp and oica are the experimental and the
predicted values of triaxial strength of the rock.
iv. Compute the average percent error (avpe) for the particular data set as:
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where npt is the number of data points in the data set.

V. Consider next data set and repeat steps iii and iv.

vi. In this way compute pe and avpe for all data sets and get overall average of the avpe
value as:
avpe

Overall average %error = 2.2p (6)

Numberof data sets
vii Now consider the next trial value of octi by assigning another value to the ratio k and
repeat steps ii to vi. The computations are carried on until a very high k-value is

reached.

Figure 6 shows the variation of overall average % error with the ratio ocri/cci. The figure
indicates that the overall average % error is minimum when the critical confining pressure is
taken nearly equal to the UCS of the intact rock. A better insight can also be obtained by
plotting the cumulative distribution function of the percent error in prediction, for individual
data points. Figure 7 presents the cumulative distribution function of the percent error for
various values of the ratio k. It can be seen that the minimum error is likely to occur in
prediction when Kk is close to 1, i.e. the critical confining pressure is nearly equal to the UCS of
the intact rock.

The failure criterion may therefore be written as:
(Gl—cs)zcci+m63-ism_¢cg for0<oc; <o (7)
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As per the critical state concept, the value of ¢i should approach zero as the rock enters the
critical state. Beyond this, there will be no more increase in the frictional strength due to an
increase in confining stress or normal stress. The shear strength will therefore reach a saturation
limit as given below.
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The UCS aq; is generally the most readily available property of intact rocks. The use of

MMC criterion, therefore, needs only a single additional parameter ¢io for its application. The
parameter ¢io represents the limiting value of the friction angle ¢; for 5z—0. Theoretically only a

T foro, >0 (8)



single triaxial test is required (in addition to UCS) to get ¢io. However, if more than one triaxial
test data are available, the optimal value of the parameter ¢io may be obtained as (Singh et el.,
2011):
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Left: Figure 6. Variation of overall average percent error with ratio ocniloc. Right: Figure 7. Cumulative
distribution function of error in prediction of triaxial strength.

Alternatively, if triaxial test data are available for very low o3 values (o3—0), it will be
preferable to fit a linear criterion to determine cio and o¢io by the least squares method and get o
using Equation 2.

To demonstrate the applicability of the MMC, the triaxial test data of Indiana Limestone
(Schwartz, 1964) has been considered. There are eleven data points including the UCS test
(Table 2, Figure 5).

The Hoek-Brown parameters were computed by using all data points through the least
squares method. For MMC, the critical confining pressure was taken equal to the UCS of the
rock and the value of ¢io was obtained through expressions given in Equations 9 to 11. The
results are given in Table 2.

Table 2. Triaxial test data for Indiana limestone (Schwartz, 1964; source: Hoek, 1983)

o3(MPa) 0 65 137 203 279 344 412 484 554 623 684

o1 (MPa) 44 66 85 99 109 119

HB Parameters: m=1.21, o = 60.66 MPa;
MMC parameters: ¢io = 30.7°; oeri = 44 MPa (UCS)

The best fitting plots for the MMC and HB criteria are presented in Fig. 8. It is seen that the
MMC fits better than the HB criterion. The MMC also reflects the strong curvature of the shear
strength envelope.
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Figure 8. Best fitting plots for MMC and HB failure envelopes for Indiana Limestone

4 CONSEQUENCES OF STRONG CURVATURE OF THE SHEAR STRENGTH
ENVELOPE

The consequences of the strong curvature of shear strength envelopes, actually stronger than
that of the Hoek-Brown criterion for intact rock, have been further investigated by Shen et al.
(2018), (2019), who demonstrated with the FRACOD fracture mechanics code (Shen et al.
2013) that a somewhat larger volume of rock would be fractured as a result of tunnel siting at 1
or 2km depth, as compared to the fracturing depth modelled with conventional models of shear
strength. Shen managed to formulate relatively simple equations with recognisable input
parameters, to describe both the tensile and compressive side of the non-linear shear strength,
and more recently gave examples of typical strength envelopes (Shen et al. 2019) as illustrated
in Figure 9. Approximate (numerical) conversion to the format o; versus 3 shown in Figure 10,
reinforces the impossibility of using the confined compressive strength of rock to estimate
mountain height limits. The confined compression strength is just too high.

5 THE MAXIMMUM MOUNTAIN HEIGHT HYPOTHESIS

The critical state concept envisages that there is a maximum value up to which the shear
strength of an initially intact rock may be made to increase due to confining pressure. As per the
MMC this value is about equal to UCS for ¢io equal to 30°, or slightly higher if ¢io is more than
30°. The corresponding maximum o1 values will be of the order of 3 times UCS or more.
Shen’s recent formulations for the tensile and compressive regions of the strength envelope also
re-confirm these findings. If the example of a rock with UCS of 250 MPa is considered (Fig. 10)
it is estimated that the maximum principal stress will be on the order of three times the UCS i.e.
more than about 750 MPa. If the corresponding maximum mountain height is obtained based on
a maximum confined strength of 750 MPa and 27 kN/m? unit weight, it will come out to be 27.8
km. This computed height is of course much too large as compared to the actual maximum
present height i.e. Everest’s 8,848m.



400 Approximate nonlinear
strength criteria with critical
state for intact rocks.

Shen, Shi, Barton, 2019

d=dy —(45°— ) >
Ty

2
0,
350 C=Cy +(O'r —CO){—“ J

Oy

Shear stress (MPa)

. y T o b=y [I _ L ]
black | 5.0 500 | 45° 04 | - 20,
=% hie | 100 | 1000 | S0° 182 T T
green| 150 200.0 55° 315 o
oy Lred [ 250 | 300 | 60 0.2 ¢=c, +(o, _co)z_n
Normal stress (MPa) L

Figure 9. Shen and Shi are responsible for the generation of the four example strength envelopes based on
Shen’s recent formulations for the tensile and compressive regions of the strength envelope shown on the
right. The input data was suggested, so that the critical state theory of 1976 could be more easily
understood as a logical and very simple strength criterion. Note the consequential touching Mobhr circles
for each set of input data (Shen et al. 2019).
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Figure 10. The confined compressive strength for rocks at e.g. 9km depth, where the confining pressure
o3 might be of the order of 2.8 x 9,000/100 = 250 MPa, or perhaps higher due to the tectonic thrust against
the Himalayas, where most of the highest peaks are found. This suggests that o1 will be much too high to
explain ‘only’ 8 to 9km maximum mountain heights. Shen et al. 2019.

On the contrary, if the maximum height is obtained based on the maximum shear strength
available, then for a UCS of 250 MPa, the maximum height will be about 250/27 = 9.25 km.
This value roughly matches with the actual maximum heights in the Himalayas.

The suggested hypothesis is therefore that the maximum height of mountains is governed by
the maximum shear strength available and not by the maximum compressive strength available.



6 CONCLUSIONS

By observing numerous strongly curved triaxial strength envelopes for silicates and carbonates
presented by Mogi, 1966, who applied confining pressures in the range 100 to 500 MPa, the
suggestion was made by Barton, 1976 that maximum strength (a horizontal strength envelope)
would be reached along a line defined by the simple relation 61 = 3 o3 critical. Some results
presented in 1976 suggested that o3 critical was close to the value of UCS for the given rock. A
hypothesis is suggested that the highest mountains of 8,000-9,000m are limited by maximum
possible shear strength, not by maximum compressive strength. The critical state concept
(Barton, 1976) was utilized to propose the Modified Mohr Coulomb (MMC) criterion to capture
the strong curvature actually exhibited by rocks (Singh et al., 2011). Critical state mechanics has
also been used recently to describe the tensile and compressive side of the non-linear shear
strength (Shen et al. 2019). The maximum shear strength available has been found to be nearly
equal to the UCS. It is observed that the maximum mountain height as computed from
maximum available shear strength is very close to field values. There remain uncertainties
concerning sub-Himalayan valley pore pressure levels, scale effects on UCS (therefore reducing
maximum shear strength), and the absence or presence of highly stressed potential shear planes
beneath the high mountains. Whether the rock is brittle or nearly ductile is another uncertainty.
Potential shear planes beneath the highest mountains are presumably resisting the lateral loading
due to plate tectonics, and the vertical loading due to the weight of overburden.
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