
1 

 

Highest Mountains Suggest Strong Curvature of Shear Strength 
Envelopes for Rock 

Mahendra Singh 
Department of Civil Engineering, IIT Roorkee, Roorkee, INDIA 

Nick Barton 
NB&A, Oslo, Norway 

 

ABSTRACT: The apparent 8 to 9km height limit of mountains will be addressed using critical 
state shear strength arguments, since confined compression strength is too high to explain these 
‘limited’ heights. Modified Mohr Coulomb criteria have been derived based on critical state 
mechanics for rocks. These criteria are utilised to obtain estimates of maximum shear strength 
which actually is more likely to govern the height limit of mountains. 

1 INTRODUCTION 

 
There are fifteen mountains in the world with heights in the rarified range of 8 to 9km. The 
highest is Everest at approximately 8,848m. An extract from a Wikipedia photograph is shown 
in Figure 1. Since we are concerned with the ultimate strength of rock one can pose the 
question: why are the highest mountains no higher than 9km? Have mountains ever been higher 
than this during the earth’s history? Since plate tectonics have been at work for a very long time, 
and contrary glacial processes also, one can perhaps assume that the extensive ‘empirical 
evidence’ that we see today is also a reflection of what has been in the recent and distant past. 
The strength of rock has little reason to have changed either, although it could be higher ‘today’ 
if the geothermal gradient had declined significantly. 
     In a well-known article written by Terzaghi (1962) near the end of his career: ‘Stability of 
steep slopes on hard unweathered rock’, a simple formulation of critical slope height was 
suggested: H = q/γ, where the uniaxial strength of rock and the vertical stress caused by its 
density are compared. The assumed vertical stress is estimated to be γH (or γH/100 if using 
familiar MPa units as in rock mechanics). One can also use units kN/m2 and kN/m3 for the rock 
strength and density. Concerning the height of steep slopes, as opposed to mountains, Terzaghi 
suggested that the reason this formula over-predicted heights must be due to the presence of 
jointing. In fact, an explanation of cliff and mountain-wall heights has recently been developed 
as H=σt/γν, involving the tensile strength of intact rock, density, and Poisson’s ratio. 
     The even simpler ‘Terzaghi’ formula or its equivalent has been observed in use in internet 
‘chat sites’ (‘What rock strength is the highest mountain limited by?). The UCS/density formula 
(unfortunately) appears to produce a ‘realistic’ height for the highest mountains, when using the 
uniaxial strength of strong rocks such as 250MPa. However, at 9km depth, the rock mechanics 
reality concerning compression strength will be the 2 to 3 times higher polyaxially confined 
compression strength, and we do not accept 20-25km high mountains as being possible on earth, 
with our strong gravity. We need another explanation for the height ‘limit’ of apparently, about 
9km. 
     Formation of high mountains due to colliding of plates in tectonically active region can be 
explained as shown in Fig. 2 (Nedoma, 1997). It was suggested that due to tectonic forces the 
lower plate bends downwards and releases horizontal tectonic stress. The horizontal stress 
becomes minor principal stress near the thrust. There is subsidence and normal faulting in the 
lower plate. The upper plate bends upwards and introduces compression and higher tectonic 
stress. The horizontal stress becomes major principal stress. This region experiences continuous 
uplifting in the form of mountains. The boundary of colliding plates experiences thrust faulting. 
The bottom part of the upper plate also bends upwards, due to which tangential stresses are 
released. Decrease in confining stress results in reduction of melting temperature of the rock and 
the rock melts. This molten rock may come out in the form of volcanoes. 
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Figure 1. Mount Everest, 8,864m (Wikipedia photo). Note that the peak of Everest is immediately behind 
the peak showing possible ‘shear-planes’. (These cannot be tilted bedding). Misuse of the ‘Terzaghi’ 
formula: hc = 100 σc/γ gives an apparently correct answer for maximum mountain height (e.g.100 x 
250/2.8 = 8.9km). The problem is that it has to be the confined strength of rock at 9 km depth, and this is 
much too high. Otherwise we would have 20-25km high mountains. Correct logic suggests a lower 
(critical state) shear strength limit, which may (also) be approximately 250 MPa. Figure 4 shows a 
possible explanation. 

 

 
 

Figure 2. Precursors to the formation of high mountains due to interaction between colliding plate 
boundaries (Redrawn after Nedoma, 1997). 

 
2 CONFINED COMPRESSIVE STRENGTH OF INTACT ROCKS 

 
An appropriate failure criterion is required to obtain the confined compressive strength of intact 
rocks. The conventional linear Mohr-Coulomb criterion, though used extensively, has the 
limitation that the strength is assumed to be varying linearly with confining stress. It is a well 
accepted fact that variation in normal stress substantially alters the failure mode and the shear 
strength of the rock varies in a non-linear manner (Fig. 3) (Lockner and Beeler, 2002). For large 
variation in n, like those occurring at great depths in the earth’s crust, the non-linearity of the 
failure envelope substantially influences strength behaviour and should be considered while 
analysing strength behaviour.  
     In this context, the application of a critical state concept for rocks (Barton, 1976) has been 
found to be promising in correctly defining the strong curvature of the failure envelope (Singh 
and Singh, 2005; Singh et al., 2011, Shen et al. 2019). Barton (1976) postulated that ‘the critical 
state for any intact rock is defined as the stress condition under which the Mohr-envelope of 
peak shear strength of the rocks reaches a point of zero gradient. This condition represents the 
maximum possible shear strength of the rock. For each rock, there will be a critical effective 
confining pressure above which the shear strength cannot be made to increase’. With increasing 



3 

 

confining pressure, the failure mechanism passes through brittle, brittle-ductile-transition, 
ductile and finally critical state (Fig. 4). Barton’s proposal for a critical state maximum possible 
shear strength was based on the observations of the strong curvature of the shear strength 
envelopes of numerous intact rocks, as demonstrated by Mogi (1966) (Fig. 4)  

 

 
 
Figure 3. Mohr failure envelope showing relation between stresses and failure parameters 

(Redrawn from Lockner and Beeler, 2002) 

 

  

Figure 4. Observation of the strong curvature of the shear strength of intact rock at high confining 
pressure, with these examples from Mogi (1966) was the reason for proposing a critical state maximum 
possible shear strength in Barton (1976). Since this time a detailed study of more than 1,000 triaxial tests 
was performed by Singh et al. (2011), who verified that the majority of rocks exhibited close proximity, if 
not equality, of the UCS Mohr circle and the critical confining pressure needed to reach the critical stress 
(see σc and σ3 sides of adjacent Mohr circles in the left-hand figure). Since σc is approximately 
numerically equal to τmax due to the equality of the σc diameter and the radius of the critical Mohr circle, 
this simple ‘geometry’ can explain the high, but none the less limited shear strength of potential failure 
planes deep below the highest mountain chains. 

     The failure envelope for a well-known set of triaxial test data (Schwartz, 1964) reported in 
the literature (Hoek, 1983) is shown in Fig. 5. It is seen that the failure envelope approaches a 
point of zero gradient when confining stress is near 40 MPa. An evidence of a reduction in the 
friction angle is also given by Shankar et al. (2000). Based on back analysis, a friction angle of 
only 5 was reported for a depth of 40 km below the ground surface along the plate boundary in 
the Tibet Himalayan plate. It is interesting to note that the lesser the frictional resistance along 
colliding inter-plate boundaries, the lesser will be the locked-in strain energy in the large earth 
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plates. Therefore the chances of really great earthquakes in such an area are reduced. The largest 
earthquake that has taken place beneath the Tibetan plateau is ‘only’ M7 on Richter's scale 
(Singh et al., 2005).  

 

 
Figure 5. Critical state condition for Indiana limestone (Schwartz 1964; redrawn from Hoek, 1983). 

 

 
2.1 Critical State Concept Based Failure Criterion for Rocks 

 

By introducing a square term of confining pressure in the conventional linear Mohr-Coulomb 

failure criterion, Singh et al. (2011) suggested a Modified Mohr-Coulomb (MMC) criterion as 

follows: 
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Note: i0 = friction angle (MC parameter) of the rock for 3→0, ci0= cohesion (MC parameter) 

for the rock for 3→0, crti = critical confining pressure, the confining pressure at which the 

failure envelope in - space becomes horizontal. At 3 = crti the shear strength of rock will 

reach its maximum, the deviatoric stress at failure (1-3) will be constant for 3  crti. 
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The criterion has two parameters crti and i0. To get parameter crti, Singh et al. (2011) back 
analysed a database comprising 154 triaxial data sets and came up with the suggestion that the 
critical confining pressure for an intact rock may be taken nearly equal to its UCS value. In the 
present study (2019) some additional data (from Shen et al., 2014; Jimenez, 2014) was added to 
the data base of Singh et al. (2011) to re-confirm the findings of Singh et al. (2011). The present 
data base comprises of the following extensive triaxial test data: 

 
Table 1. The triaxial data sets available in the present analysis. 

Rock type No. of data sets No. of triaxial tests 

Igneous 42 293 

Sedimentary 98 592 

Metamorphic 63 371 

Total 203 1256 
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The following steps were used to back analyse crti: 

 
i.  Out of the two unknown parameters crti and i0, assume a first trial value of crti as a 

multiple of UCS ci (crti = k.ci). Say for example the first trial value is considered as 
0.20 ci (k=0.2), 

ii. Consider the first triaxial test data set; the set includes UCS and a set of (3, 1) values, 
iii. Fit the failure criterion into the data and find out the best fitting value of the parameter 

i0 by least square method. Compute the percent error in prediction for each triaxial 
strength value as: 
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where pe is the percent error in prediction, 1exp and 1cal are the experimental and the 

predicted values of triaxial strength of the rock.  

iv. Compute the average percent error (avpe) for the particular data set as: 
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where npt is the number of data points in the data set.  

v. Consider next data set and repeat steps iii and iv.  

vi. In this way compute pe and avpe for all data sets and get overall average of the avpe 

value as: 

setsdataofNumber

avpe
error%averageOverall


=  (6) 

vii Now consider the next trial value of crti by assigning another value to the ratio k and 

repeat steps ii to vi. The computations are carried on until a very high k-value is 

reached. 

 
     Figure 6 shows the variation of overall average % error with the ratio crti/ci. The figure 
indicates that the overall average % error is minimum when the critical confining pressure is 
taken nearly equal to the UCS of the intact rock. A better insight can also be obtained by 
plotting the cumulative distribution function of the percent error in prediction, for individual 
data points. Figure 7 presents the cumulative distribution function of the percent error for 
various values of the ratio k. It can be seen that the minimum error is likely to occur in 
prediction when k is close to 1, i.e. the critical confining pressure is nearly equal to the UCS of 
the intact rock.  

The failure criterion may therefore be written as: 
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     As per the critical state concept, the value of i should approach zero as the rock enters the 
critical state. Beyond this, there will be no more increase in the frictional strength due to an 
increase in confining stress or normal stress. The shear strength will therefore reach a saturation 
limit as given below. 
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     The UCS ci is generally the most readily available property of intact rocks. The use of 
MMC criterion, therefore, needs only a single additional parameter i0 for its application. The 
parameter i0 represents the limiting value of the friction angle i for 3→0. Theoretically only a 
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single triaxial test is required (in addition to UCS) to get i0. However, if more than one triaxial 
test data are available, the optimal value of the parameter i0 may be obtained as (Singh et el., 
2011): 
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Left: Figure 6. Variation of overall average percent error with ratio crti/ci. Right: Figure 7. Cumulative 
distribution function of error in prediction of triaxial strength. 

 
     Alternatively, if triaxial test data are available for very low 3 values (3→0), it will be 
preferable to fit a linear criterion to determine ci0 and i0 by the least squares method and get ci 
using Equation 2.  
     To demonstrate the applicability of the MMC, the triaxial test data of Indiana Limestone 
(Schwartz, 1964) has been considered. There are eleven data points including the UCS test 
(Table 2, Figure 5).  
     The Hoek-Brown parameters were computed by using all data points through the least 
squares method. For MMC, the critical confining pressure was taken equal to the UCS of the 
rock and the value of i0 was obtained through expressions given in Equations 9 to 11. The 
results are given in Table 2. 

 
Table 2. Triaxial test data for Indiana limestone (Schwartz, 1964; source: Hoek, 1983) 

3 (MPa) 0 6.5 13.7 20.3 27.9 34.4 41.2 48.4 55.4 62.3 68.4 
1 (MPa) 44 66 85 99 109 119 128.2 135.1 141.9 149.1 156.5 
HB Parameters: m=1.21, ci = 60.66 MPa;  
MMC parameters: i0 = 30.7; crti = 44 MPa (UCS) 

 

 
     The best fitting plots for the MMC and HB criteria are presented in Fig. 8. It is seen that the 
MMC fits better than the HB criterion. The MMC also reflects the strong curvature of the shear 
strength envelope.  
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Figure 8. Best fitting plots for MMC and HB failure envelopes for Indiana Limestone 

 

 
4 CONSEQUENCES OF STRONG CURVATURE OF THE SHEAR STRENGTH 
ENVELOPE 

 
The consequences of the strong curvature of shear strength envelopes, actually stronger than 
that of the Hoek-Brown criterion for intact rock, have been further investigated by Shen et al. 
(2018), (2019), who demonstrated with the FRACOD fracture mechanics code (Shen et al. 
2013) that a somewhat larger volume of rock would be fractured as a result of tunnel siting at 1 
or 2km depth, as compared to the fracturing depth modelled with conventional models of shear 
strength. Shen managed to formulate relatively simple equations with recognisable input 
parameters, to describe both the tensile and compressive side of the non-linear shear strength, 
and more recently gave examples of typical strength envelopes (Shen et al. 2019) as illustrated 
in Figure 9. Approximate (numerical) conversion to the format σ1 versus σ3 shown in Figure 10, 
reinforces the impossibility of using the confined compressive strength of rock to estimate 
mountain height limits. The confined compression strength is just too high. 

 

5  THE MAXIMMUM MOUNTAIN HEIGHT HYPOTHESIS 

 
The critical state concept envisages that there is a maximum value up to which the shear 
strength of an initially intact rock may be made to increase due to confining pressure. As per the 
MMC this value is about equal to UCS for i0 equal to 30, or slightly higher if i0 is more than 
30.  The corresponding maximum 1 values will be of the order of 3 times UCS or more. 
Shen’s recent formulations for the tensile and compressive regions of the strength envelope also 
re-confirm these findings. If the example of a rock with UCS of 250 MPa is considered (Fig. 10) 
it is estimated that the maximum principal stress will be on the order of three times the UCS i.e. 
more than about 750 MPa. If the corresponding maximum mountain height is obtained based on 
a maximum confined strength of 750 MPa and 27 kN/m3 unit weight, it will come out to be 27.8 
km. This computed height is of course much too large as compared to the actual maximum 
present height i.e. Everest’s 8,848m.  
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Figure 9. Shen and Shi are responsible for the generation of the four example strength envelopes based on 
Shen’s recent formulations for the tensile and compressive regions of the strength envelope shown on the 
right. The input data was suggested, so that the critical state theory of 1976 could be more easily 
understood as a logical and very simple strength criterion. Note the consequential touching Mohr circles 
for each set of input data (Shen et al. 2019). 

 

 

Figure 10. The confined compressive strength for rocks at e.g. 9km depth, where the confining pressure 
σ3 might be of the order of 2.8 x 9,000/100 = 250 MPa, or perhaps higher due to the tectonic thrust against 
the Himalayas, where most of the highest peaks are found. This suggests that σ1 will be much too high to 
explain ‘only’ 8 to 9km maximum mountain heights. Shen et al. 2019. 

 
On the contrary, if the maximum height is obtained based on the maximum shear strength 

available, then for a UCS of 250 MPa, the maximum height will be about 250/27 = 9.25 km. 
This value roughly matches with the actual maximum heights in the Himalayas. 

The suggested hypothesis is therefore that the maximum height of mountains is governed by 
the maximum shear strength available and not by the maximum compressive strength available. 
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6 CONCLUSIONS 

 
By observing numerous strongly curved triaxial strength envelopes for silicates and carbonates 
presented by Mogi, 1966, who applied confining pressures in the range 100 to 500 MPa, the 
suggestion was made by Barton, 1976 that maximum strength (a horizontal strength envelope) 
would be reached along a line defined by the simple relation σ1 = 3 σ3 critical. Some results 
presented in 1976 suggested that σ3 critical was close to the value of UCS for the given rock. A 
hypothesis is suggested that the highest mountains of 8,000-9,000m are limited by maximum 
possible shear strength, not by maximum compressive strength. The critical state concept 
(Barton, 1976) was utilized to propose the Modified Mohr Coulomb (MMC) criterion to capture 
the strong curvature actually exhibited by rocks (Singh et al., 2011). Critical state mechanics has 
also been used recently to describe the tensile and compressive side of the non-linear shear 
strength (Shen et al. 2019). The maximum shear strength available has been found to be nearly 
equal to the UCS. It is observed that the maximum mountain height as computed from 
maximum available shear strength is very close to field values. There remain uncertainties 
concerning sub-Himalayan valley pore pressure levels, scale effects on UCS (therefore reducing 
maximum shear strength), and the absence or presence of highly stressed potential shear planes 
beneath the high mountains. Whether the rock is brittle or nearly ductile is another uncertainty. 
Potential shear planes beneath the highest mountains are presumably resisting the lateral loading 
due to plate tectonics, and the vertical loading due to the weight of overburden.  
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